网站标志
15CrmoG无缝管
材质:合金
规格:38*3.5
产地:天津
商品售价:¥电议

商品介绍
详细参数

    15CrMoG无缝钢管可回收,符合环保、节能、节约资源的国家战略,国家政策鼓励扩大15CrMoG无缝钢管的应用领域。目前我国15CrMoG无缝钢管消费量占钢材总量的比重仅为发达国家的一半,15CrMoG无缝钢管使用领域扩大为行业发展提供更广阔的空间。
    针对15CrMoG钢的焊接性的工作特点,根据以往的经验,参照国外提供的焊接工艺卡,我们选择了两种方案进行焊接试验。
    方案Ⅰ:焊接预热,采用ER80S-B2L焊丝,T1G焊打底,E8018-B2焊条,焊条电弧焊盖面,焊后进行局部热处理。
    方案Ⅱ:采用ER80S-B2L焊丝,T1G焊打底,E309Mo-16焊条,焊条填充电弧焊盖面,焊后不进行热处理。焊丝和焊条的化学成分及力学性能见表1。
    焊后热处理
    采用方案Ⅰ焊接的试件,焊后应进行局部高温回火处理。热处理的工艺为:升温速度为200℃/h,升到715℃保温1小时15分钟,降温速度100℃/h,降到300℃后空冷。具体采用JL-4型履带式电加热器(1146×310)包绕焊缝,用硅酸铝棉层保温,保温层厚度50mm,温度控制采用DJK-A型电加热器自动控温仪。
    焊接工艺评定试验结果
    试验方案拉伸试验弯曲试验冲击韧性试验aky(J/cm2)
    抗拉强度δb/Mpa断裂部位弯曲角度面弯背弯焊缝熔合线热影响区(HAZ)
    方案Ⅰ550/530母材50。合格合格84.8162135.6
    方案Ⅱ525/520母材50。合格合格79.4109.296.7
    15CrMo焊接工艺
    2.1焊接材料
    针对15CrMo钢的焊接性及现场高压管道的工作特点,根据以往的经验,参照国外提供的焊接工艺卡,我们选择了两种方案进行焊接试验。
    方案Ⅰ:焊接预热,采用ER80S-B2L焊丝,T1G焊打底,E8018-B2焊条,焊条电弧焊盖面,焊后进行局部热处理。
    方案Ⅱ:采用ER80S-B2L焊丝,T1G焊打底,E309Mo-16焊条,焊条填充电弧焊盖面,焊后不进行热处理。焊丝和焊条的化学成分及力学性能见表1。
    表1焊接材料的化学成分和力学性能
    型号CMnSiCrNiMoSPδb/Mpaδ,%
    ER80S-B2L≤0.050.70.41.2<0.20.5≤0.025≤0.025≤50025
    E8018-B20.070.70.31.10.5≤0.04≤0.0355019
    E309Mo-16≤0.120.5~2.50.922.0~25.012.0~14.02.0~3.0≤0.025≤0.03555025
    2.2焊前准备
    试件采用15CrMoG无缝钢管,规格为φ325×25,坡口型式及尺寸见图1。
    焊前用角向磨光机将坡口内外及坡口边缘50mm范围内打磨至露出金属光泽,然后用丙酮清洗干净。
    试件为水平固定位置,对口间隙为4mm,采用手工钨极氩弧焊沿园周均匀点焊六处,每处点固长度应不小于20mm。焊条按表2的规范进行烘烤。
    表2焊条烘烤规范
    焊条型号烘烤温度保温时间
    E8018-B2300℃2h
    E309Mo-16150℃1.5h
    2.3焊接工艺参数
    按方案Ⅰ焊前需进行预热,根据Tto-Bessyo等人提出的计算预热温度公式:
    To=350√[C]-0.25(℃)式中,To——预热温度,℃。
    [C]=[C]x[C]p[C]p=0.005S[C]x
    [C]x=C(MnCr)/9Ni/187Mo/90式中,
    [C]x——成分碳当量;
    [C]p——尺寸碳当量;S——试件厚度(本文中S=25mm);
    [C]x=C(MnCr)/97/90Mo=0.361
    [C]p=0.045则To=138℃
    因此预热温度选为150℃。采用氧-乙炔焰对试件进行加温,先用测温笔粗略判断试件表面的的温度(以笔迹颜色变化快慢进行估计),最后用半导体点温计测定,测量点至少应选择三点,以保证试件整体均达到所要求的预热温度。
    焊接时,第一层采用手工钨极氩弧焊打底,为避免仰焊处焊缝背面产生凹陷,送丝时采用内填丝法,即焊丝通过对口间隙从管内送入。其余各层采用焊条电弧焊,共焊6层,每个焊层一条焊道。方案Ⅰ和方案Ⅱ的焊接工艺参数见表3、4。按方案Ⅰ焊
    表3方案Ⅰ的焊接工艺参数
    焊道名称焊接方法焊接材料焊材规格/mm焊接电流/A电弧电压/V预热及层间温度热处理规范
    打底层钨板氩弧焊ER80S-B2Lφ2.411012
    填充层焊条电弧焊E8018-B2φ3.2585~9023~25150℃715。×75min
    盖面层焊条电弧焊E8018-B2φ3.2585~9023~25
    表4方案Ⅱ的焊接工艺参数
    焊道名称焊接方法焊接材料焊材规格/mm焊接电流/A电弧电压/V预热及层间温度热处理规范
    打底层钨板氩弧焊ER80S-B2Lφ2.411012
    填充层焊条电弧焊E309Mo-16φ3.290~9522~24//
    盖面层焊条电弧焊E309Mo-16φ3.290~9522~24
    接时,层间温度应不低于150℃,为防止中断焊接而引起试件的降温,施焊时应由二名焊工交替操作,焊后应立即采取保温缓冷措施。
    2.4焊后热处理
    采用方案Ⅰ焊接的试件,焊后应进行局部高温回火处理。热处理的工艺为:升温速度为200℃/h,升到715℃保温1小时15分钟,降温速度100℃/h,降到300℃后空冷。具体采用JL-4型履带式电加热器(1146×310)包绕焊缝,用硅酸铝棉层保温,保温层厚度50mm,温度控制采用DJK-A型电加热器自动控温仪。
    3焊接工艺评定试验
    试件焊后按JB4730-94《压力容器无损检测》标准进行100%的超声波探伤检验,焊缝Ⅰ级合格。按JB4708《钢制压力容器焊接工艺评定》标准进行焊接工艺评定试验。评定结果见表5。
    表5焊接工艺评定试验结果
    试验方案拉伸试验弯曲试验冲击韧性试验aky(J/cm2)
    抗拉强度δb/Mpa断裂部位弯曲角度面弯背弯焊缝熔合线热影响区(HAZ)
    方案Ⅰ550/530母材50。合格合格84.8162135.6
    方案Ⅱ525/520母材50。合格合格79.4109.296.7
    从拉伸试验结果可知,两种方案的拉伸试样全部断在母材,说明焊缝的抗拉强度高于母材;弯曲试验全部合格,说明焊缝的塑性较好。根据表5中的冲击韧性试验结果可知,方案Ⅰ的冲击韧性明显高于方案Ⅱ,证明方案Ⅰ的焊后热处理规范比较理想,高温回火不仅达到了改善接头组织和性能目的,而且使韧性与强度配合适当。从室温机械性能结果可知,所推荐的两种焊接工艺方案均可用于现场施工。方案Ⅰ采用了与母材成分接近的焊条,焊缝性能同母材匹配,焊缝应具有较高的热强性,焊缝在高温下长期使用不易破坏。难点是焊后热处理规范较为严格,回火温度和保温时间及加热和冷却速度控制不当反而会引起焊缝性能下降。方案Ⅱ采用了奥氏体不锈钢焊条施焊,虽然可以省去焊后热处理,但由于焊缝与母材膨胀系数不同,长期高温工作时可发生碳的扩散迁移现象,容易导致焊缝在熔合区发生破坏。因此,从使用可靠性考虑,现场采用方案Ⅰ施焊更为稳妥。
    4结论
    15CrMo钢厚壁高压管的焊接采用两种焊接方案均为可行。为了保证焊缝性能同母材匹配且具有较高的热强性,采用方案Ⅰ效果更佳,关键是要严格控制焊后热处理工艺。
    方案Ⅱ虽可省去焊后热处理,但焊缝在高温下发生碳的迁移扩散而导致焊缝破坏的可能性不容忽视,因此,只有在焊后无法进行热处理时才慎重采用。

当前位置
申强钢铁 郑重承诺
                  
                  申强钢铁是正规注册实体企业

                  申强团队拥有丰富的施工经验

                  申强产品附带原厂材质保证书

      
                  拿起您的电话 即刻开启财富之旅

                  022--60993833   13920603833

脚注信息
Copyright  2013-2015 All Rights Reserved. 天津申强钢铁销售有限公司版权所有   津ICP备15003452号   
服务时间:周一至周日 08:30 — 20:00  全国订购及服务热线:022-60993633 
联系地址:天津市北辰区九园线与津围线路口向北1000米   邮政编码:300400